首页
关于
Search
1
怎么快速从GitHub上下载代码
48 阅读
2
GitHub下载加速的有效方法
39 阅读
3
Python中的center()是怎么用的
35 阅读
4
如何在GitHub上下载旧版本
34 阅读
5
怎样删除GitHub存储库
32 阅读
Python
Github
IDC推荐
登录
Search
Xbe
累计撰写
242
篇文章
累计收到
1
条评论
首页
栏目
Python
Github
IDC推荐
页面
关于
搜索到
76
篇与
的结果
2025-03-11
urllib2能处理post请求吗
Urllib2是用于获取URLs(统一资源定位符)的一个Python模块。它以urlopen函数的形式提供了非常简单的接口。能够使用各种不同的协议来获取网址。Urllib2还提供一个稍微复杂的接口用于处理常见的情况:如基本身份验证、cookies、proxies(代理)等。这些是由handlers和openers对象提供。Urllib2使用相关的网络协议(FTP,http),支持多种获取URLs的方案(以URL前面的”: ”定义,如:ftp://python.org)。示例代码:#!/usr/bin/python #coding=utf-8 import urllib import urllib2 def post(url, data): req = urllib2.Request(url) data = urllib.urlencode(data) #enable cookie opener = urllib2.build_opener(urllib2.HTTPCookieProcessor()) response = opener.open(req, data) return response.read() def main(): posturl = "http://yourwebname/member/login" data = {'email':'myemail', 'password':'mypass', 'autologin':'1', 'submit':'登 录', 'type':''} print post(posturl, data) if __name__ == '__main__': main()
2025年03月11日
3 阅读
0 评论
0 点赞
2025-03-11
Python能实现栈的结构吗
栈(stack)又名堆栈,它是一种运算受限的线性表。在Python中可使用列表进行实现。什么是栈?栈(stack)又名堆栈,它是一种运算受限的线性表。其限制是仅允许在表的一端进行插入和删除运算。这一端被称为栈顶,相对地,把另一端称为栈底。向一个栈插入新元素又称作进栈、入栈或压栈,它是把新元素放到栈顶元素的上面,使之成为新的栈顶元素;从一个栈删除元素又称作出栈或退栈,它是把栈顶元素删除掉,使其相邻的元素成为新的栈顶元素。如何实现?在Python中使用列表来实现:#!/usr/bin/env python #定义一个列表来模拟栈 stack = [] #进栈,调用列表的append()函数加到列表的末尾,strip()没有参数是去掉首尾的空格 def pushit(): stack.append(raw_input('Enter new string: ').strip()) #出栈,用到了pop()函数 def popit(): if len(stack) == 0: print 'Cannot pop from an empty stack!' else: print 'Removed [', stack.pop(), ']' #编历栈 def viewstack(): print stack #CMDs是字典的使用 CMDs = {'u': pushit, 'o': popit, 'v': viewstack} #pr为提示字符 def showmenu(): pr = """ p(U)sh p(O)p (V)iew (Q)uit Enter choice: """ while True: while True: try: #先用strip()去掉空格,再把第一个字符转换成小写的 choice = raw_input(pr).strip()[0].lower() except (EOFError, KeyboardInterrupt, IndexError): choice = 'q' print '\nYou picked: [%s]' % choice if choice not in 'uovq': print 'Invalid option, try again' else: break #CMDs[]根据输入的choice从字典中对应相应的value,比如说输入u,从字典中得到value为pushit,执行pushit()进栈操作 if choice == 'q': break CMDs[choice]() #判断是否是从本文件进入,而不是被调用 if __name__ == '__main__': showmenu()
2025年03月11日
4 阅读
0 评论
0 点赞
2025-03-08
Python中的简单定时器
Timer: 隔一定时间调用一个函数,如果想实现每隔一段时间就调用一个函数的话,就要在Timer调用的函数中,再次设置Timer。Timer是Thread的一个派生类python中的线程提供了java线程功能的子集。#!/usr/bin/env python from threading import Timer import time timer_interval=1 def delayrun(): print 'running' t=Timer(timer_interval,delayrun) t.start() while True: time.sleep(0.1) print 'main running't是一个Timer对象。delay一秒钟之后执行delayrun函数。其中time.sleep函数是用来让主线程暂停一点时间再继续执行。
2025年03月08日
4 阅读
0 评论
0 点赞
2025-03-08
利用Python对网站进行测速
利用python可以编写的用于测试网站访问速率的代码,实现原理是输出打开某url的时间,并计算出访问100次的平均时间,时间和最小时间等等。根据时间的变化判断网站速度。完整代码:import urllib2 from datetime import * import time def Process(url,n): minSpan = 10.0 maxSpan = 0.0 sumSpan= 0.0 over1s = 0 for i in range(n): startTime = datetime.now() try: res = urllib2.urlopen(url,timeout=10) except: pass endTime = datetime.now() span = (endTime-startTime).total_seconds() sumSpan = sumSpan + span if span < minSpan: minSpan = span if span > maxSpan: maxSpan = span #超过一秒的 if span>1: over1s=over1s + 1 print(u'%s Spent :%s seconds'%(url,span)) print(u'requested:%s times,Total Spent:%s seconds,avg:%s seconds, max:%s seconds,min:%s seconds,over 1 secnod:%s times'%(n,sumSpan,sumSpan/n,maxSpan,minSpan,over1s)) print('\n') if __name__=='__main__': Process('http://www.baidu.com',100)运行结果如下:http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.046 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.109 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.062 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.047 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.047 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.016 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.078 seconds http://www.baidu.com Spent :0.109 seconds http://www.baidu.com Spent :0.015 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.109 seconds http://www.baidu.com Spent :0.094 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.047 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.032 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds http://www.baidu.com Spent :0.031 seconds requested:100 times,Total Spent:3.67 seconds,avg:0.0367 seconds, max:0.109 seconds,min:0.015 seconds,over 1 secnod:0 times
2025年03月08日
6 阅读
0 评论
0 点赞
2025-03-08
用Python来统计本机CPU利用率
模块win32pdh是Python中的一个模块,封装了Windows Performance Data Helpers API。win32pdh方法AddCounter 添加一个新计数器 AddEnglishCounter 通过英文名称为查询添加计数器 RemoveCounter 删除一个打开的计数器。 EnumObjectItems 枚举对象的项目 EnumObjects 枚举对象 OPENQUERY 打开一个新查询 CloseQuery 关闭打开的查询。 MakeCounterPath 制作完全解决的计数器路径 GetCounterInfo 检索有关计数器的信息,例如数据大小,计数器类型,路径和用户提供的数据值。 GetFormattedCounterValue 检索格式化的计数器值 CollectQueryData 收集指定查询中所有计数器的当前原始数据值,并更新每个计数器的状态代码。 ValidatePath 验证指定的计数器是否存在于计数器路径中指定的计算机上。 ExpandCounterPath 检查指定的计算机(如果没有指定本地计算机),则检查与计数器路径中的通配符字符串匹配的计数器和计数器实例。 ParseCounterPath 解析计数器路径的元素。 ParseInstanceName 解析实例名称的元素 SetCounterScaleFactor 设置在请求格式化计数器值时应用于指定计数器的计算值的比例因子。 BrowseCounters 显示计数器浏览对话框,以便用户可以选择要返回给调用者的计数器。 ConnectMachine 连接到指定的计算机,并在PDH DLL中创建和初始化计算机条目。 LookupPerfIndexByName 返回与指定计数器名称对应的计数器索引。 LookupPerfNameByIndex 返回与指定索引对应的性能对象名称。 完整代码:python统计cpu利用率#-*-coding=utf-8-*- import win32pdh import time # Counter paths PROCESSOR_PERCENT = r'\Processor(_Total)\% Processor Time' MEMORY_PERCENT = r'\Memory\% Committed Bytes In Use' MEMORY_COMMITTED = r'\Memory\Committed Bytes' PROCESS_BYTES = lambda x: r'\Process(%s)\Private Bytes' % x class Query: def __init__(self): self.counters = {} self.query = None self.query = win32pdh.OpenQuery(None, 0) def add_counter(self, path): if win32pdh.ValidatePath(path) != 0: raise Exception('Invalid path: %s' % path) counter = win32pdh.AddCounter(self.query, path, 0) self.counters[path] = counter def remove_counter(self, path): win32pdh.RemoveCounter(self.counters[path]) del self.counters[path] def get_values(self): values = {} win32pdh.CollectQueryData(self.query) for path in self.counters: status, value = win32pdh.GetFormattedCounterValue( self.counters[path], win32pdh.PDH_FMT_LONG) values[path] = value return values sysinfo_query = Query() sysinfo_query.add_counter(PROCESSOR_PERCENT) sysinfo_query.add_counter(MEMORY_PERCENT) sysinfo_query.get_values() def get_sysinfo(): """Return a tuple (mem_usage, cpu_usage).""" info = sysinfo_query.get_values() return info[MEMORY_PERCENT], info[PROCESSOR_PERCENT] listcpu=[] while True: time.sleep(2) x,y=get_sysinfo() listcpu.append(y) if len(listcpu)==10: icount=0 for c in listcpu: if c>4: icount+=1 if icount>5: print "在统计的1分钟内,cpu已经有5次大于4%" listcpu=[] print y
2025年03月08日
6 阅读
0 评论
0 点赞
1
...
5
6
7
...
16